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Abstract
Most materials phenomena are manifestations of processes that are operative
over a vast range of length and time scales. A complete understanding of the
behaviour of materials thereby requires theoretical and computational tools that
span the atomic-scale detail of first-principles methods and the more coarse-
grained description provided by continuum equations. Recent efforts have
focused on combining traditional methodologies—density functional theory,
molecular dynamics, Monte Carlo methods and continuum descriptions—
within a unified multiscale framework. This review covers the techniques that
have been developed to model various aspects of materials behaviour with
the ultimate aim of systematically coupling the atomistic to the continuum
descriptions. The approaches described typically have been motivated by
particular applications but can often be applied in wider contexts. The self-
assembly of quantum dot ensembles will be used as a case study for the issues
that arise and the methods used for all nanostructures. Although quantum
dots can be obtained with all the standard growth methods and for a variety of
material systems, their appearance is a quite selective process, involving the
competition between equilibrium and kinetic effects, and the interplay between
atomistic and long-range interactions. Most theoretical models have addressed
particular aspects of the ordering kinetics of quantum dot ensembles, with
far fewer attempts at a comprehensive synthesis of this inherently multiscale
phenomenon. We conclude with an assessment of the current status of
multiscale modelling strategies and highlight the main outstanding issues.
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1. Introduction

The technological hallmark of all civilizations is borne by the available raw materials that
can be harnessed for practical uses. The Stone Age, Bronze Age and Iron Age all attest to
the overriding importance of particular materials that artisans formed into weapons, tools and
utensils, and artists crafted into signatures and snapshots of their culture. The second half of
the 20th century will undoubtedly come to be known as the ‘silicon age’, as a testament to the
pivotal role of this material in the information revolution. The relentless advance of materials
technology continues unabated, driven by the expanding horizon of our demands and fuelled
by aspirations of atom-by-atom assembly from the palette of the periodic table [1–3]. Smaller,
faster computers, mobile telecommunications, terahertz materials, stronger, lighter structural
materials, biocompatibility, tissue engineering . . .; the list goes on and on.

At the heart of materials development are the processing and characterization
methodologies for the control of structure, functionality and properties. The sophistication of
modern technology has reached the point where, in many cases, the operational consequences of
atomic-scale phenomena have a direct impact on the design process. We consider a traditional
example, the deformation behaviour of materials. Dislocations, which appear as extra or
displaced planes of atoms inserted into a regular lattice, allow materials to deform without
brittle fracture. An important property of dislocations is their ability to move through the lattice
in response to an applied external stress, thereby allowing slip to propagate. Dislocations and
other defects in crystals correspond to specific atomic configurations whose energies can be
calculated from quantum mechanical principles, and there has been considerable progress in
this direction [4–6].

In a more coarse-grained view of deformation, the interactions between dislocations and
their movement within and across grains are mediated by long-range elastic fields that do not
require full atomic resolution. The dislocations can be considered as the basic elements of a
grain-size model in which their interactions are determined by a combination of linear elasticity
and atomistic simulations. Such simulations describe the collective behaviour of a large
number of dislocations and provide direct real-space information about their microstructure as
a function of applied stress [7, 8]. At the macroscopic scale, the deformation of the material is
calculated from the interactions between grains. Indeed, polycrystalline grains may themselves
be considered as the basic interacting elements in a simulation of deformation [9].

The foregoing ‘bottom-up’ example contrasts with the following ‘top-down’ scenario.
The dawn of the electronics age was heralded by the invention of the transistor in the late
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Figure 1. A semi-log plot of the number of transistors on a silicon chip (filled squares, left scale)
and their minimum feature size (open triangles, right scale) as a function of their announcement
dates by Intel since 1971 [13]. The names of several processors are indicated. The broken line
is a least squares fit and corresponds to Moore’s law with a doubling time of two years. The
Semiconductor Industry Association Roadmap [14] predicts that feature sizes of 70 nm will be
achieved by 2008.

1940s. Much smaller than vacuum tubes, transistors also had much shorter switching times
and consumed much less power. Accordingly, electronic circuits that used transistors could
be made faster and more complex than those based on vacuum tubes. Further improvements
necessitated making the transistors smaller and placing them closer together. The key for
miniaturization was the development of the integrated circuit in the late 1950s. The idea was
to fabricate patterned layers of materials with different electrical properties on top of one
another on a ‘chip’ of silicon to form the various circuit elements, such as transistors and
capacitors, together with their electrical connections. The patterning of the layers is carried
out by the selective removal of material using lithography, for example, with light that has
been focused with a lens.

Since the early 1970s the number of transistors that semiconductor manufacturers can
put on a chip has on average doubled every two years (figure 1). This is known as Moore’s
law, named after Gordon Moore (one of the co-founders of Intel), who made this observation
in 1965 [10]. This exponential increase in transistor densities has been sustained largely on
the back of improvements in lithographic technology, which has seen dramatic reductions in
the feature size, from several microns to a few tenths of a micron, as shown in figure 1. This
increase has been accomplished without corresponding increases in production costs [11]. The
result is processors with larger memories and faster operating speeds which, for the consumer,
translates into more powerful, but less expensive, computers.

But the physical principles underlying chip production suggest that there are obstacles
to the unabated progression of Moore’s law [12]. As the thickness of the conventional
SiO2 insulator continues to be reduced, electrons will eventually be able to tunnel directly
through the thin film, at which point the consequent increases in power consumption and
heat production become critical issues. Current estimates are for minimum feature sizes of
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Figure 2. An electron micrograph [19] of an isolated nanotube into which a chain of Gd
metallofullerenes has been inserted (top) and a schematic representation of the structure (bottom).
The horizontal bars represent a length of 3 nm. Reprinted with permission from K Suenaga,
M Tencé, C Mory, C Colliex, H Kato, T Okazaki, H Shinohara, K Hirahara, S Bandow and S Iijima
2000 Science 290 2280. Copyright 2000 AAAS.

20–30 nm being achieved around 2018. However, new materials, new architectures and new
computing paradigms could extend the life of Moore’s law [11].

The drive toward miniaturization is not likely to cease until the materials and components
that will replace the metal–oxide–semiconductor-based technology are assembled at the atomic
scale. An important step toward this goal was the discovery [15] of carbon nanotubes (figure 2),
which consist of graphitic layers seamlessly wrapped into cylinders only a few nanometres
in diameter, but extending up to millimetres in length. These systems are endowed with
extraordinary structural,mechanical and electrical properties that are derived from the nature of
the carbon bond, their cylindrical symmetry and their quasi-one-dimensionality. For example,
nanotubes can sustain quite large deformations reversibly, and multiwalled nanotubes have
been reported to have a Young’s modulus more than an order of magnitude greater than that
of steel [16, 17]. Such remarkable properties have led to research into the functionalization
of nanotubes by particles inserted into their hollow interior, including biological molecules,
thus creating the potential for a broad range of electronic, optical and biotechnological
applications [18].

An altogether different avenue for modern materials science and technology is found in
biological applications. For example, the sequence of events following a medical implant [20]
is initiated by the interactions between individual water molecules and the surface of the
implant, which occurs on a timescale of nanoseconds. The resulting water ‘shell’ is an
important factor for influencing proteins and other molecules that arrive later, on a timescale of
microseconds to milliseconds. Eventually, the cells reaching the surface interact through the
protein coating whose properties are determined by the initial surface and the water adlayer.

These examples provide somewhat opposing views about the multiscale nature of materials
behaviour. At the root of the ‘bottom-up’ approach is quantum mechanics. All other methods
at more coarse-grained length and time scales are approximations to the quantum mechanical
description of materials. The goal is to predict macroscopic behaviour directly from quantum
mechanical principles, if the calculation can be carried out, or indirectly, when used in
conjunction with other methods, which is the typical case. In the ‘top-down’ scheme, smaller
structures mean that surfaces and interfaces gain importance in determining the properties of
these structures because of the increasing surface-to-volume ratio. A greater understanding
is therefore required of the relationships between structure, thermodynamics and properties
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of surfaces and interfaces, especially for the chemical, structural, mechanical and thermal
stability of small structures. For individual structures, a full quantum mechanical calculation
may be feasible, but a multiscale approach is required for modelling an ensemble of structures
and the interactions of these structures with their environment.

There are several reasons for the emergence of multiscale modelling as a theme for
modern computational materials science. The first is the existence of fundamentally multiscale
materials phenomena, such as crack initiation and propagation, which are characterized by a
continuous feedback between atomic-scale and coarse-grained degrees of freedom, similar
to that found in turbulence and critical phenomena. The second is the characterization
of phenomena that have a firm conceptual basis at the macroscopic level, but have quite
different manifestations at the atomic level, which significantly affects the properties of
nanostructures. Examples include the competition between interfacial energy and ‘bulk’
morphological stability, stress and strain inhomogeneities that affect dopant distributions in
semiconductor nanostructures, including the electrical characteristics of resonant tunnelling
diodes, and dislocation dynamics and deformation processes. Another reason is that, with
improvements in computer hardware and software, such calculations have become feasible
and are now capable of addressing many issues uncovered by experiments with successively
finer resolutions.

Multiscale modelling also has much to offer the practical development and optimization
of materials. Experimental methods of materials design and synthesis are costly and time-
consuming, leading to long development times. Modelling and simulation can be used to
optimize processing parameters and to interpret experiments at the atomic scale. This is
especially important for situations where phenomena are too fast or too complex to image
directly. On the other hand, simulations based on large-scale quantum mechanical calculations
and molecular dynamics can be stopped at any time, examined to whatever level of detail is
required (which may involve advanced data management and visualization techniques [21])
and used to suggest modifications based on fundamental principles.

The organization of this review is as follows. In section 2 we summarize the main
traditional methods for modelling materials. Each method has been developed and optimized
for space and time scales appropriate to particular degrees of freedom,from electrons and nuclei
to coarse-grained fields. With this background, we discuss several strategies for the multiscale
modelling of materials in section 3. All of these rely on the methods in section 2,but differ in the
way that information from each length scale is incorporated. Many aspects of nanostructures
provide fertile ground for multiscale methodologies, and in section 4 we discuss applications
to quantum dots. The interplay between the formation kinetics of individual quantum dots
and the properties of quantum dot ensembles provides a paradigm for all nanostructures. We
conclude with a discussion of the outstanding issues in section 5. Multiscale modelling is
an expanding effort that now finds application in a number of disciplines. There have been
several recent conference proceedings [22–24], review articles [25–29], and special issues [30]
that are devoted to particular aspects of this effort. In addition to nanostructured materials,
multiscale methods have also been developed for fluid flow through porous media [31, 32],
and abstract interacting particle systems [33–35].

2. Hierarchy of methods for materials modelling

The most common approach to materials modelling is based on the ‘divide and conquer’
strategy, wherein methods appropriate to particular length and time scales are used to address
aspects of materials phenomena that operate only over those scales. This has led to several
independent methodological streams, which can be broadly categorized as ab initio density
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Figure 3. The hierarchy of modelling methods that are discussed in section 2 for the range of length
and time scales over which they typically used, illustrated with the multiscale phenomenology of
quantum dots obtained from the heteroepitaxial growth of InAs on GaAs(001). (a) The c(4 × 4)
phase (reconstruction) of the GaAs(001) surface that is the most common substrate for the growth
of quantum dots in this system [36, 37]. The unit cell is indicated by the shaded region. (b)
Atomically resolved scanning tunnelling microscopy (STM) images (200 Å × 200 Å) of a single
three-dimensional island along [11̄0] and [110], showing a lens shape in the top panel, but bounding
(137) facets in the bottom panel [38]. Reprinted from K Jacobi 2003 Atomic structure of InAs
quantum dots on GaAs Prog. Surf. Sci. 71 185–215. Copyright 2003, with permission from
Elsevier. (c) An STM image (500 nm × 500 nm) of an ensemble of three-dimensional islands on
GaAs(001) grown with a substrate temperature of 450 ◦C and a growth rate of 0.05 Å s−1 [38]. The
number density of the dots is 1.9 × 1011 cm−1. Reprinted from K Jacobi 2003 Atomic structure
of InAs quantum dots on GaAs Prog. Surf. Sci. 71 185–215. Copyright 2003, with permission
from Elsevier. (d) A (200 nm × 200 nm) section of a large-scale cross-sectional image showing
five- and ten-period superlattices of InAs/GaAs quantum dots (bright regions) [39]. The lower
boundaries of each image define the basic spatial and temporal resolutions of the corresponding
computational method. The upper boundaries are determined by computational and algorithmic
limits; continuum equations extend beyond the limits shown into the macroscopic domain.

functional theory, molecular dynamics, statistical methods based on Monte Carlo algorithms
and continuum mechanics (figure 3). Each of these is computationally intensive in its own right,
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so most of the initial effort was directed to optimizing algorithms, potentials and parameters
for each method individually, rather than generating information for input into other methods.
However, the expanding capabilities of computational methods due to the increasing power
of computers and continuing development of efficient algorithms, together with advances in
the synthesis, analysis and visualization of materials at increasingly finer spatial and temporal
resolutions, has spawned a huge effort in the multiscale descriptions of materials phenomena.
In this section, we describe the building blocks of these methods. The following section will
describe how these are combined within multiscale modelling strategies.

2.1. First-principles methods

The observable properties of solids are governed by quantum mechanics, as expressed by
solutions of a Schrödinger equation for the motion of the electrons and the nuclei. However,
because of the inherent difficulty of obtaining even grossly approximate solutions of the
full many-body Schrödinger equation, one typically focuses on reduced descriptions that are
believed to capture the essential energetics of the problem of interest.

Hohenberg, Kohn and Sham [40–42] formulated a theory based on the electron density, in
terms of which the solution of the Schrödinger equation could be given a sound mathematical
basis. This method is based on two theorems:

(i) the total energy of an electron system in an external potential is a unique functional of the
total electron density; and

(ii) the density that minimizes the energy is the ground-state density, and this minimum energy
is the ground-state energy of the system.

The basic idea of the Kohn–Sham–Hohenberg theorems is that the ‘real’ electrons are replaced
by ‘effective’ electrons with the same total density that move as independent particles in the
potential generated by the other electrons and ion cores. For a system of N electrons, the total
density � is expressed as a sum of the orbitals ψi as

�(r) =
N∑

i=1

|ψi (r)|2, (1)

where the ψi are solutions of the Kohn–Sham equations,[
− h̄2

2m
∇2 + Veff

]
ψi (r) = εiψi (r), (2)

in which the effective potential Veff is the sum of Coulomb and exchange–correlation
contributions. The Coulomb potential VC is

VC(r) = −e2
∫

�(r′)
|r − r′| dr + e2

∑
α

Zα
|Rα − r| , (3)

in which Rα denotes atomic positions. This potential is a solution of Poisson’s equation and
thus has a purely classical origin. The exchange–correlation potential Vxc is obtained from the
exchange–correlation energy Exc via

Vxc = δExc[�(r)]
δ�

. (4)

The solution of these equations for the individual electrons must be obtained self-consistently
because the wavefunction for each electron is included in the effective potential of all other
electrons.
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The Kohn–Sham–Hohenberg theory,now called density functional theory (DFT), provides
an enormous conceptual and computational simplification of the many-electron problem. The
complex interactions between the electrons of the original system are subsumed into a universal
energy functional. But the Hohenberg–Kohn–Sham theorems are only statements about
existence and uniqueness: they do not provide a prescription for determining this functional
which, because of the exchange–correlation energy, is not generally known. The widely
adopted local density approximation (LDA) presumes that this functional depends only on the
local value of electron density [41], i.e. that inhomogeneous electron systems can be viewed as
locally homogeneous. The local density functional has been studied in a system of interacting
electrons with a constant density (because of the homogeneous background of positive charge
rendering the system electrically neutral), called the homogeneous electron gas, with several
approaches, including quantum Monte Carlo methods [43], which produces results that are
essentially exact.

The success of the LDA has far exceeded initial expectations [41]. For systems with
slowly varying charge densities, as in many metals, the LDA has proven to be an accurate
approximation, with bond lengths and angles calculated to within a few per cent of their
experimentally measured values. There are several reasons for this success, including the
fact that, although the shape of the exchange–correlation hole—the region surrounding each
electron that repels the other electrons—is not well represented, the overall effective charge
is described exactly [44, 45], and the errors made by the LDA for exchange and correlation
separately tend to cancel [46, 47]. But there are also known limitations of the LDA. Errors are
incurred when treating systems away from equilibrium configurations, as in the calculation of
transitions rates. For nonuniform charge densities the exchange–correlationenergy can deviate
significantly from the uniform limit. The generalized gradient approximation (GGA) [48–51]
employs the gradient of the charge density to account for local variations in the electron density.
For systems where the charge density is sufficiently slowly varying, the GGA provides an
improvement over the LDA.

Density functional theory is suitable for calculating the charge density and energy for a
fixed structure of atoms but is inefficient if the atoms are allowed to move as, for example,
during the geometrical optimization of a molecule or solid. Car and Parrinello [52] proposed
a method based on the DFT framework to overcome this limitation. The energy minimization
is carried out by constructing equations of motion for all of the parameters involved in the
variation, including the nuclear coordinates for geometrical optimization, and the electronic
wavefunctions are updated simultaneously with the position changes of the atomic nuclei. The
efficiency of this scheme [53] has considerably expanded the system sizes accessible to static
calculations and has opened up the possibility of ab initio ‘quantum’ molecular dynamics
simulations. When the electronic wavefunctions are reliably known, the forces on the atomic
nuclei can be obtained from the Hellmann–Feynman theorem and then used to move the atoms
as in standard molecular dynamics (section 2.2).

The development of efficient algorithms and a better understanding of density
functionals [54] have made DFT the primary method for calculating the properties of
materials [55], including band structures, band gaps, cohesive energies, chemisorption
energies, catalytic properties and activation barriers for various kinetic processes. System
sizes of several hundred atoms are well within the scope of modern methods, but the scaling
of the required computer time as the square of the number of atoms in the calculation has
prevented more rapid progress. This has stimulated the search for ‘order-N’ methods, where
the computer time scales approximately linearly with N , by exploiting the inherent locality of
quantum mechanics [56–58]. The implementation of this strategy will place many important
systems in nanotechnology within the capabilities of DFT.
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2.2. Molecular dynamics

Quantum molecular dynamics simulations are limited to system sizes of a few hundred atoms
and to elapsed real times of a few picoseconds. Accordingly, the first step in the coarse
graining of the full quantum mechanical description of a dynamical process is to remove the
electronic degrees of freedom from the problem. This is accomplished by first using the
Born–Oppenheimer approximation to separate the electronic and nuclear coordinates. The
total energy is then calculated for each set of N nuclear positions Rα, for α = 1, 2, . . . , N ;
from this the forces exerted on each atom by all other atoms can be determined. Interpolation
between these points yields a potential energy surface U({Rα}). Regarding the atoms as
classical particles moving on this surface, the quantum mechanical motion governed by the
Schrödinger equation is replaced by Newton’s equation of classical mechanics:

Fα = mα

d2Rα

dt2
, (5)

where mα is the mass of the αth atom and the force Fα acting on this atom is calculated from
the interatomic potential energy according to

Fα = −∇αU. (6)

Thus, the classical Hamiltonian H of the system is

HMD = 1
2

∑
α

mαV2
α + U, (7)

where Vα is the velocity of the αth atom. These are the equations of the molecular dynamics
method [59–61].

There are two primary aspects to the practical implementation of molecular dynamics: (i)
the numerical integration of the equations of motion together with the boundary conditions and
any constraints on the system; and (ii) the choice of the potential. For a system of N particles,
equation (5) represents a system of 3N second-order differential equations. This system can
be expressed as 6N first-order differential equations by introducing the velocity as a separate
variable:

dRα

dt
= Vα,

dVα

dt
= Fα

mα

. (8)

The systems of equations (5) or (8) are solved numerically with finite difference methods
to obtain the trajectories of the atoms on the potential energy surface. The most common
integrators are based on the Verlet algorithm [62, 63] and its descendents, and predictor–
corrector methods [64]. When applied to the system in equation (8), these algorithms are
used to iteratively update the forces, the velocities and the positions over the timescale of the
simulation. Parallel computing with spatial decomposition [61, 65] has extended the system
sizes that can be studied with molecular dynamics to N ∼ 106–109 [66, 67].

All of the physics in the molecular dynamics method is contained in the forces acting on
each particle in the system, which are determined by the interatomic potentials in equation (6).
For a single-component system, the potential energy U is first written as an expansion in terms
of n-body potentials:

U({Rα}) = 1

2!

∑
α �=β

U2(Rαβ) +
1

3!

∑
α �=β �=γ

U3(Rαβ,Rαγ ,Rβγ ) + · · · . (9)

Here, Rαβ = Rα − Rβ are interatomic separations and U2 represents an n-body interaction
energy. The two-body term U2 represents the interaction between atomic pairs and depends
only on their separation Rαβ . This term describes the energetic cost of bond stretching. The
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three-body term U3 depends on the relative orientations of triplets of atoms, i.e. not simply
upon interatomic distances, but on bond angles as well, and thereby accounts for the energetics
of bond stretching and bond bending. For the expansion in equation (9) to be meaningful,
convergence must be rapid in n, although most molecular dynamics studies truncate this
expansion at either the second or the third order. Once the interaction potential has been
specified, the time development of the system is calculated from the equations of motion (5)
or (8).

The choice of potential for a molecular dynamics simulation is determined by factors such
as the bond type, the desired accuracy, transferability and the available computational resources.
Potentials can be categorized broadly as (i) pair potentials, (ii) empirical many-body potentials
and (iii) quantum mechanical potentials. Two-body, or pair, potentials, such as the Lennard-
Jones [68] and Morse [69] potentials, are used for large-scale simulations where computational
efficiency is paramount, but where a generic description is sufficient, rather than detailed
comparisons with a particular materials system. For systems where multibody interactions
are important [70], the Stillinger–Weber [71], Tersoff [72, 73] and Brenner [74] potentials are
often used for covalent materials, and embedded-atom [75, 76], effective medium [77] and
Finnis–Sinclair potentials [78] are common choices for metals. Such potentials are empirical
in that they are parametrized by fitting either to a set of experimental measurements or to
quantum mechanical calculations of representative atomic configurations. Typical properties
used for such parametrizations are the lattice constant, binding energy, elastic constants and
vacancy formation energies. The basic assumption of this approach is that the fitting captures
the essential features of the interatomic potential for the phenomenon of interest. However,
large local departures from the coordination or bonding used for the parametrization can
take such potentials outside their domain of validity and lead to unreliable results. This has
fostered efforts at deriving interatomic potentials directly from quantum mechanical principles.
Foremost among these are potentials based on [79, 80] and derived from [81, 82] tight-
binding theory and those based on the Kohn–Sham equations using generalized pseudopotential
theory [4, 83].

The basic limitation of the molecular dynamics method that has prevented long simulation
times is that processes such as atomic diffusion are inherently multiscale phenomena. The
integration time step must be small enough to capture the dynamics of the vibration modes
of the system, with frequencies of the order of 1013 s−1. This requires time steps in the
femtosecond range. But the residence time of an adatom between hops is of the order
of microseconds, and the interactions responsible for aggregation phenomena occur over a
timescale of milliseconds to minutes. This ‘time gap’ is evident from the trajectories of atoms,
which are complex orbitals localized around their initial sites with only rare excursions to
neighbouring sites [84, 85]. Several methods have been developed for accelerating molecular
dynamics with such rare events based on stimulating the transitions to occur faster than in an
ordinary simulation [86]. In favourable circumstances, molecular dynamics simulations can
be extended to microseconds.

2.3. Monte Carlo methods

The next step for coarse graining is to address the ‘time gap’ problem of molecular dynamics.
The basis of Monte Carlo methods [87] is that the deterministic equations (5) of the molecular
dynamics method are replaced by stochastic transitions for the slow processes in the system.
The name ‘Monte Carlo’ was coined by John von Neumann [88] and refers to the random
sampling of numbers, in analogy to gambling in Monte Carlo, Monaco, a city renowned
for its casinos. In their most general form, Monte Carlo methods are stochastic algorithms
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for exploring phase space, but their implementation for equilibrium and nonequilibrium
calculations is somewhat different. We first review the Metropolis algorithm, which is the
basis of applications to equilibrium systems.

2.3.1. The Metropolis algorithm. Consider the thermodynamic average 〈y〉 of a variable with
values yi in state i that has energy Ei ,

〈y〉 =
∑

i yi pi∑
i pi

, (10)

in which the probabilities pi = e−Ei/kB T , where kB is Boltzmann’s constant and T is the
absolute temperature. If the system is initially in a state i , detailed balance requires that the
rate of transitions Ti j from state i to state j satisfies

pi Ti j = p j Tji, (11)

or
Ti j

Tji
= p j

pi
= e−(E j −Ei )/kB T . (12)

The right-hand side of this equation is known, so to generate a set of states with the distribution
pi , the Ti j are chosen as

Ti j =
{

1, if p j > pi (E j < Ei);
e−(E j −Ei )/kB T , if p j � pi (E j � Ei ).

(13)

A random number r ∈ (0, 1) is then selected and the system is moved to state j only if
r < e−(E j −Ei )/kB T . This is the Metropolis algorithm [89, 90]. The ‘dynamics’ so produced
does not represent the actual evolution of the system [91, 92].

2.3.2. Kinetic Monte Carlo simulations. Suppose that the probability of finding a system in
state σ at time t is P(σ, t) and that the rate of transitions per unit time from σ to σ ′ is W (σ, σ ′).
The equation of motion for P is the master equation [93]:

∂P

∂ t
=

∑
σ ′

P(σ ′, t)W (σ ′, σ )−
∑
σ ′

P(σ, t)W (σ, σ ′). (14)

Kinetic Monte Carlo (KMC) methods are algorithms that solve the master equation by accepting
and rejecting transitions with probabilities that yield the correct evolution of a nonequilibrium
system.

The KMC method represents an additional level of abstraction beyond the molecular
dynamics method. The effect of fast dynamical events is taken into account by using stochastic
transition rates for slower events. These transition rates are often represented as the product
of an attempt rate and the probability of success per attempt, which is taken as an exponential
involving the energy barrier to the process. Every event i is assigned a rate ri :

ri = νi exp(−Ei/kBT ), (15)

where νi is a frequency prefactor, typically of the order of a vibrational frequency (1013 s−1)
for surface processes [94, 95], Ei is the free energy barrier for the process and T is the absolute
temperature. Although the details of the underlying mechanism for kinetic processes are lost,
the explicit calculation of atomic trajectories is avoided, so KMC simulations can be performed
over real times, running into seconds, hours or days, as required. In essence, the factor νi in
equation (15) represents the timescale of the fastest process, which is computed explicitly
in the molecular dynamics method, but the exponential factor increases this timescale in the
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KMC method to that of the actual transitions. The KMC method thereby offers considerable
advantages over the molecular dynamics method, both in terms of the real time over which
the simulation evolves, and the number of atoms included in the simulation, because much of
the computational overhead in molecular dynamics is used to evolve the system between rare
events.

The construction of a model for a KMC simulation can often benefit from a related classical
or quantum molecular dynamics simulation to identify the important physical process and
estimate the prefactors and kinetic barriers. The transition rates are particular to the processes of
interest and must be determined either by direct calculation, from a first-principles calculation
or a molecular dynamics simulation,or inferred from experiment. The feasibility of performing
detailed simulations over experimental timescales allows various parametrizations to be tested
and models of kinetic phenomena to be validated. Such simulations play a key role in several
multiscale modelling strategies.

A KMC simulation proceeds by tabulating all of the rates ri and then advancing the
system by a single configuration change chosen from all possible events. In the ‘n-fold way’
algorithm [96], this is achieved by first computing the total rate R = ∑

i ri . A number
ξ1 ∈ (0, 1) is then selected randomly, the integer n is identified such that

n−1∑
i=1

ri

R
< ξ1 �

n∑
i=1

ri

R
(16)

and the system is updated by the execution of event n. The system clock is then advanced
by choosing a second random number ξ2 ∈ (0, 1), whereupon the time of the simulation is
advanced from t to t +�t , where

�t = − ln ξ2

R
. (17)

Recent advances [97, 98] using K -level searches and alternative data structures have
led to significant improvements in the efficiency of Monte Carlo algorithms. Parallel
algorithms [99, 100] have further extended the capabilities of the KMC method.

2.4. Continuum equations

Continuum equations, typically in the form of deterministic or stochastic partial differential
equations, are at the pinnacle of the coarse-graining hierarchy. The underlying atomic structure
of matter is neglected altogether and is replaced with a continuous and differentiable mass
density. Analogous replacements are made for other physical quantities such as energy and
momentum. Differential equations are then formulated either from basic physical principles,
such as the conservation of energy or momentum, or by invoking approximations within a
particular regime. For example, the standard equations of fluid mechanics are derived from
conservation laws, but are asymptotically valid only in the limit where the timescales of
molecular motion are much shorter than those of the fluid flow [101]. This can be justified
for simple fluids, but not for fluids composed of complex molecules such as polymers.
The rheology of complex fluids is modelled with constitutive relations that account for the
deformation history of the fluid and acknowledge the molecular origins of deformation and
flow.

There are many benefits of a continuum representation of materials phenomena. Foremost
among these is the ability to examine macroscopic regions in space over extended periods
of time. This is facilitated by extensive libraries of numerical methods for integrating
deterministic and stochastic differential equations. The best known of these is the finite element
method [102, 103]. This is a general method for solving differential equations whereby the
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region of interest is tessellated with a uniform or nonuniform mesh determined by contiguous
components called ‘elements’. The solution of the differential equation is discretized on
the mesh points, called nodes, and interpolated within the elements. A partial (respectively,
ordinary) differential equation is thereby replaced by a set of coupled ordinary (respectively,
algebraic) equations and solved numerically for the values of the solution at the nodal points.
The main advantage of the finite element method is flexibility in geometric complexity,material
inhomogeneities and anisotropies, all within a computationally efficient framework.

Consider the deformation of a material from a reference state r0 to a deformed state r,
which may vary with time. The displacement vector field u(r, t) is defined in terms of these
states as

u(r, t) = r(t)− r0. (18)

Within the framework of linear elasticity, the components εi j of the strain tensor are given in
terms of the components (u1, u2, u3) of u by

εi j = 1
2

(
∂ j ui + ∂i u j

)
, (19)

where

∂k = ∂

∂rk
, (20)

and (r1, r2, r3) are the components of r. The Hamiltonian H is expressed as the sum of kinetic
and potential energy contributions as

H = 1
2

∫
�u̇2 dr + 1

2

∫
εi j Ci jklεkl dr, (21)

where � is the mass density of the material, Ci jkl are the components of the elasticity tensor
and summation is implied over repeated indices.

The finite element representation of the displacement field is defined at the nodes of the
elements, and shape functions (sometimes called interpolation functions or basis functions)
are used to extend this field throughout each element. Denoting by ϕi(r) the shape function
for the i th node, the displacement field is

u(r, t) =
Nn∑

i=1

ϕi(r)ui(t), (22)

in which Nn is the number of nodes and ui (t) is the displacement at the i th node. This relation
implies two important properties of shape functions [102]: (i) a shape function takes the value
0 or 1 at a nodal point r j : ϕi (r j) = δi j , where δi j is the Kronecker delta; and (ii) the sum of
all shape functions at any point r is unity:

∑
i ϕi(r) = 1. A common choice for the shape

function is linear interpolation, whereby the basis function has the value unity at a given node
and decreases to zero linearly at the nearest neighbour nodes, and is zero elsewhere. This is
also a convenient choice for coupling to methods with atomic resolution because it permits
a one-to-one correspondence between nodes and atoms. Upon substitution of equation (22)
into (21), we obtain the finite element approximation to the elastic Hamiltonian:

HFE = 1
2

Nn∑
i, j=1

Ne∑
�=1

(
u̇�i M�

i j u̇
�
j + u�i K �

i j u
�
j

)
, (23)

where Ne is the number of elements and M and K are the finite element mass and
stiffness matrices, respectively. For atomic-size elements, the mass can be collapsed onto
the nodes rather than being uniformly distributed, in which case the mass matrix becomes
diagonal: Mi j = miδi j . Equations of motion for the displacement at the nodes, in the form of
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a set of coupled ordinary differential equations, can now be obtained from the finite element
Hamiltonian in terms of the forces from the surrounding nodes.

Complementing the numerical solution of partial differential equations is the vast analytic
methodology for identifying asymptotic scaling regimes and performing stability analyses.
Additionally, if a continuum equation can be systematically derived from atomistic principles,
there is the possibility of discriminating between inherently atomistic effects and those that
find a natural expression in a coarse-grained framework. Continuum equations also provide
the opportunity for examining the effect of apparently minor modifications to the description
of atomistic processes on the coarse-grained evolution of a system which, in turn, facilitates
the systematic reduction of full models to their essential components.

3. Methods of multiscale modelling

Each of the methods described in the preceding section is best suited to a particular level
of accuracy, as dictated by the successive elimination of the original degrees of freedom.
Density function methods provide a quantum mechanical description of electrons and nuclei,
which is appropriate for processes such as crack formation, chemical reactions and surface
kinetics, where chemical bonds deviate appreciably from their equilibrium configurations
and, in extreme cases, such as fracture, break. Where deviations from equilibrium are small
but atomistic resolution is still necessary, molecular dynamics offers many computational
advantages over a full density functional calculation. Monte Carlo methods are especially
useful for obtaining statistical information about a system from the transition rates between
configurations, whether in equilibrium or driven away from equilibrium. Finally, continuum
equations provide a reduced description in terms of continuous fields for the coarse-grained
evolution of the system.

The fundamental tenet of multiscale modelling is that information at each scale is
systematically incorporated in a manner that transcends the single-scale description. There
are two basic strategies for accomplishing this: sequential and concurrent. In the sequential
approach, information from a calculation over particular length and time scales is used as input
into a more coarse-grained method. This approach presumes that the phenomenon of interest
can be separated into processes that operate at distinct length and time scales. In concurrent
multiscale modelling, these disparate scales are combined within a single hybrid scheme,
typically involving atomistic and continuum calculations. The main theoretical challenge is to
merge the two descriptions in a manner that avoids any spurious effects due this heterogeneity.
This approach is well suited to the simulation of fracture, where the complex feedback between
the atomic-scale interactions and macroscopic stresses pre-empts a clear-cut separation of
scales.

Several methodologies have been implemented within the sequential and concurrent
frameworks. In this section we review the main approaches and provide examples of each
methodology. Methods of sequential multiscale modelling include sequential parametrization,
interface propagation and systematic coarse graining. Concurrent strategies typically combine
an atomistic method, such as an ab initio density functional calculation or molecular dynamics
simulation, with continuum equations that are solved with a finite element method or some
other discretization. An introduction to several multiscale methods with worked examples
may be found in [29].

3.1. Sequential parametrization

The simplest type of multiscale modelling is sequential parametrization, whereby the output of
one calculation is used as input to a more coarse-grained method. In principle, this approach can
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(a) (b)

Figure 4. (a) A high-resolution electron microscopy image of a kink structure formed in a single-
walled nanotube under mechanical stress [113]. The diameter of the tube is 1.2 nm. (b) The atomic
structure of a single kink obtained in a molecular dynamics simulation of the nanotube in (a) [113].
The shading denotes the local strain energy of the atoms measured relative to a relaxed atom in
an infinite graphite sheet. The strain energy ranges from 0 to 1.2 eV/atom, from left to right.
Reprinted with permission from Sumio Iijima, Charles Brabec, Amitesh Maiti and Jerzy Bernholc
1996 J. Chem. Phys. 104 2089. Copyright 1996, American Institute of Physics.

be used to climb the sequential ladder from ab initio to continuum methods. In practice, either
density functional or molecular dynamics calculations are used to identify and parametrize
processes for kinetic Monte Carlo simulations. Because of the substantial computational
resources required, density functional parametrizations of KMC simulations have become
feasible only in the past few years [104–108]. The main advantage of this approach is that the
consequences of particular atomistic processes can be examined. But these processes must
first be identified, usually ‘by hand’, and their rates calculated, which relies on the accuracy
of the calculation. This is especially critical for systems whose characteristics depend on a
delicate balance between competing processes [109].

3.1.1. Computational chemistry of liquid water. A noteworthy early example of sequential
parametrization was carried out by Clementi and co-workers [110, 111] on liquid water.
Beginning with ab initio quantum mechanical calculations of water clusters (H2O)n , for
n = 1, 2, . . . , 8, an intermolecular potential was derived with two-, three- and four-body
terms (see equation (9)). Although static properties, such as x-ray and neutron scattering
intensities, are described quite well by two-body interactions alone, three- and four-body
terms are necessary to obtain the enthalpy and other thermodynamic and dynamic properties.
The full interatomic potential was then used in a molecular dynamics simulation to obtain
sound velocities in liquid water that were in agreement with the available experimental data.

3.1.2. Deformation behaviour of carbon nanotubes. The remarkable mechanical properties
of carbon nanotubes are derived from their underlying graphitic network, which is known for
its strength and elasticity. Simulations of deformation properties [112–114] have revealed
the surprising fact that a nanotube, which has a diameter of the order of a nanometre, can
be modelled as a narrow hollow cylinder that follows the laws of continuum mechanics. For
example, for bending below a sharp critical curvature, the nanotube undergoes compression
on the inner side and tension on the outer side (figure 4). This is the regime of Hooke’s law,
where the strain energy increases quadratically with the bending angle. At a critical angle,
strain energy is released through the formation of a kink, after which the strain energy increases
linearly with the bending angle. Within the continuum description this behaviour corresponds
to a reversible transformation to a different morphological pattern of the nanotube [112].
The atomic structure of nanotubes is manifested directly only for bending angles beyond
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Figure 5. (Left panel.) (a) A filled-state scanning tunnelling microscopy (STM) image of an
11 nm × 11 nm section of the GaAs(001)-β2(2 × 4) surface. (b) A simulated STM image of
the structure in (a) [117]. (Right panel.) Side and plan views of the β2(2 × 4) reconstruction of
GaAs(001), showing alternate rows of dimer pairs and missing-dimer trenches. Filled and open
circles represent As and Ga atoms, respectively, with the size indicating their proximity to the
surface. The surface unit cell is indicated by the shaded region. Reprinted with permission from
V P LaBella, H Yang, D W Bullock, P M Thibado, P Kratzer and M Scheffler 2000 Phys. Rev.
Lett. 83 2989. Copyright 2000, American Physical Society.

120◦, which results in bond breaking and a damaged nanotube upon unbending in the form of
dangling bonds. Although quantum and classical molecular dynamics can be used to model the
deformation properties of individual narrow nanotubes [112–114], continuum theory provides
a practical alternative for ensembles of nanotubes.

3.1.3. Atomistic growth kinetics during homoepitaxy on GaAs(001). GaAs(001) has been
one of the most intensively studied surfaces for the past 30 years due to its importance as a
substrate for epitaxial growth. An atomistic description of the growth kinetics on this surface
presents a significant modelling challenge, mainly for two reasons: the vastly different surface
kinetics of the two incident species (atomic Ga and either As2 or As4) and the presence of
surface phases (‘reconstructions’) with complex atomic rearrangements that are determined
by the relative fluxes of these species and the substrate temperature. The (2×4) phase occupies
the largest region of the temperature-flux ‘phase diagram’ [115] and is the substrate used for
most studies of homoepitaxial growth on this surface. The structure of the most stable of the
(2 ×4) phases, the so-called β2(2 ×4) reconstruction, has been determined by first-principles
density functional calculations [116, 117] which are supported by extensive STM studies [117–
119]. This reconstruction, shown in figure 5, is an As-terminated structure that substantially
modifies the three topmost atomic layers of the bulk-terminated surface. Alternate pairs of
dimer rows along [11̄0], together with their underlying Ga atoms, are missing and the exposed
As atoms in the third layer form dimers along this direction.

The Ga and As surface kinetics occur over a vast range of time scales. Adatom hopping
on the β2(2 × 4) phase of GaAs(001) occurs over timescales of microseconds, while island
nucleation occurs over timescales of milliseconds or longer. Moreover, even an ‘elementary’
process, such as adatom hopping, may involve the collective motion of many atoms. The most
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Figure 6. Snapshots from a KMC simulation of homoepitaxy on GaAs(001)-β2(2 × 4) that has
been parametrized by first-principles density functional calculations [123]. The sequence shows
((a), (b)) the filling of the trenches to form a local β(2 × 4) structure and (c) the nucleation of the
next layer by the adsorption of As2 onto a cluster of four Ga atoms. The view is along the [11̄0]
direction (see figure 5). Reprinted with permission from P Kratzer and M Scheffler 2002 Phys.
Rev. Lett. 88 036102. Copyright 2002, American Physical Society.

accurate method of describing such complex scenarios is by determining the energetics of the
pertinent structures and process using ab initio density functional calculations. This facilitates
the construction of a potential energy surface [120], the identification of local minima of
metastable structures [121] and pathways for processes such as the deposition and incorporation
of molecular species [122]. This information can be used to create a database of rates for the
kinetic Monte Carlo method for performing simulations over laboratory length and time scales.
Such a procedure has been carried out for homoepitaxy on GaAs(001)-β2(2 × 4) [123]. The
energy barriers characterizing the growth sequence deduced from these calculations, together
with potential energy surface for Ga adatoms, were used as input to a KMC simulation. The
growth sequence is initiated by filling a trench to produce a β(2 × 4) reconstruction locally
(figures 6(a), (b)). The next layer is formed by the adsorption of As2 onto a cluster of four Ga
atoms on top of this dimer triplet (figure 6(c)). The completion of the layer then proceeds by
the repetition of these steps.

3.1.4. Molecular dynamics and kinetic Monte Carlo simulations of growth kinetics. The
first implementation of an atomistic parametrization utilized molecular dynamics simulations
based on the Stillinger–Weber potential to study the growth kinetics on Si(001)-(2 × 1) [124–
126]. More recent applications have included a hybrid reformulation of growth on Si(001)-
(2 × 1) [127], embedded-atom parametrizations for simulations of homoepitaxial growth
on Cu(001) by molecular beam epitaxy [128, 129] and hyperthermal copper deposition on
Cu(111) [130].

3.1.5. Experimental parametrization of kinetic Monte Carlo simulations. An altogether
different approach to parametrizing kinetic Monte Carlo simulations is based on the
experimental determination of the rates of the important atomistic processes, usually from
comparisons between simulated and experimental morphologies of growing surfaces. This
inevitably involves some degree of iterative optimization to determine the rates of various
processes. Examples of this approach are Pt diffusion and aggregation on Pt(111) [131],
homoepitaxy on GaAs(001)-β2(2 × 4) [132, 133] and Ag diffusion on Pt(111) [134].

3.2. Interface propagation

The formation of nanostructures from the assembly of material deposited onto a surface may be
viewed as the creation and propagation of heterogeneous interfaces. At this level of abstraction,
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the growth of nanostructures is similar to phenomena such as combustion, multiphase fluid
flow and solidification, all of which are characterized by fronts that can develop sharp corners
and change topologically as they evolve. The characterization of these processes requires
methods for following such fronts that capture this complex evolution. In this section, we will
describe two approaches to modelling nanostructures in terms of propagating interfaces: the
level set method and the phase field method.

3.2.1. The level set method. The central idea of the level set method [135–137] is that any
boundary curve� can be represented as the set of points x for which φ(x) = 0, called the level
set, for a smooth function φ. Given the boundary velocity v, the equation for φ is

∂φ

∂ t
+ v · ∇φ = 0. (24)

The evolution of φ, and therefore of �, is a consequence of a particular choice of v. An
important feature of this method is that φ remains smooth throughout any topological changes
in �, as shown in figure 7 for the nucleation, growth and coalescence of monolayer islands.
The solution of equation (24) is obtained numerically with higher-order (typically third-order)
accuracy using essentially nonoscillatory methods [138].

The application of the level set method to the morphological evolution of a growing surface
necessitates several modifications to the basic foregoing scenario [139, 140]. Multilayer
morphologies with boundaries �n on the nth monolayer (n = 1, 2, . . .) are defined as the
set of points x for which φ(x, t) = n (figure 7(d)). The velocity is determined by step–adatom
interactions and includes processes such as attachment,detachment and edge diffusion. Finally,
there is island nucleation, i.e. the creation of island boundaries. This involves two steps.

(i) The adatoms are replaced by a continuous density, with the appropriate boundary
conditions at step edges, that is updated at each time step. This is a natural and numerically
efficient representation that is utilized in several other hybrid atomistic/continuum
methods [141–144].

(ii) The nucleation times are chosen from a homogeneous rate equation prescription, but the
positions of these events are determined from a probability weighted by the square of
the adatom density [145]. This choice produces the correct spatial correlations between
islands through the distribution of island sizes.

This discussion illustrates the eminent suitability of the level set method to the modelling
of complex processes during nanostructure formation [140, 146] by coupling auxiliary fields to
the evolution of φ. The adatom density allows the application of the method to homoepitaxial
systems, while elastic fields would extend this to strain effects in the heteroepitaxial arena. Co-
existing surface reconstructions can also be included by the introduction of separate functions
φ for each phase [147]. The method has also been extended to dislocation dynamics by
describing dislocation lines in three dimensions as the intersection of the level sets of two
separate functions [148].

3.2.2. The phase field method. The phase field method provides an alternative mathematical
description of free boundary problems for phase transitions, such as solidification and the
assembly of structures on a surface, in which the interface has a finite, but small, thickness.
The central quantity in this method is an auxiliary function, called the phase field, whose value
identifies the phase at every point in space and time. The phase field model of the solid–liquid
phase transition was first proposed by Langer [149], and has developed into a widely used
method for computing realistic growth structures in a variety of settings [150].
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Figure 7. A schematic representation of the level set formalism for the (a) nucleation, (b) growth
and (c) coalescence of monolayer islands. Shown are the island morphologies (left) and the level
set function φ (right) that represents these morphologies. The level set function remains smooth
throughout the topological changes of the island morphology. The growth rate of the islands is
determined by a particular choice of v in equation (24). The morphology in (d) shows the nucleation
of a second atomic layer and the modification of the level set function that accommodates this
process. (Adapted from figure 1 in [140].)

The phase field ϕ takes distinct values in different phases, e.g. ϕ = 0 in the liquid or
vacuum and ϕ = 1 in the solid, and changes smoothly, albeit abruptly, between these values
across the interface between the two phases. As an example, consider the following equation
of motion for ϕ:

∂ϕ

∂ t
= −δF0

δϕ
, (25)

where

F0 =
∫ [

ϕ2(1 − ϕ)2 + 1
2ε(∇ϕ)2

]
dr. (26)

Notice that these terms are nonvanishing only in the interfacial region. Equations (25) and (26)
yield the following dynamical equation for ϕ:

∂ϕ

∂ t
= ε2∇2ϕ − 2

∂[ϕ2(1 − ϕ)2]

∂ϕ
. (27)
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In one dimension, the stationary solution to this equation is

ϕ(r) = 1

2

[
1 − tanh

(
r

ε

)]
, (28)

which identifies ε as the width over which the value of ϕ changes from zero to unity. In the
absence of a driving force, the interface remains at rest, with this profile.

Driving forces are incorporated into the phase field formalism by adding appropriate terms
to the free energy in equation (26). Consider, for example, the case where the motion of the
interface is coupled to elastic stress. For an isotropic solid, the elastic free energy Fe is

Fe =
∫ (

1
2ε

2
ii + µε2

i j

)
dr, (29)

where λ and µ are Lamé coefficients, with µ being the shear modulus. The total free energy
F of the system is written as

F = F0 + Fe({εi j}, φ), (30)

where µ is replaced by µ(φ) = µφ2(3 − 2φ), so that µ(0) = 0 and µ(1) = µ, i.e. the
shear modulus is equal to µ in the solid and vanishes in the liquid (or vacuum) [151]. The
relaxational equation of motion for φ is now written as

∂ϕ

∂ t
= −R

δF

δϕ
, (31)

where R sets the timescale for the evolution of ϕ. To complete the mathematical formulation,
the equation for the elastic field is obtained from the presumption that the interface dynamics
occurs on a faster timescale than sound propagation. This implies that εi j satisfies the static
equation

δF

δεi j
= 0. (32)

Equations (31) and (32) are solved subject to appropriate initial conditions, first for the elastic
field and then for the motion of the interface (through φ) [151].

The phase field method has been applied to stress-induced instabilities [151], the
motion of steps [152–154], island nucleation and growth [155, 156] and self-organized
nanostructures [157].

3.3. Hybrid methods

Many physical systems can be spatially decomposed into regions where atomic positions
deviate appreciably from equilibrium, requiring a description based on density functional
theory or, possibly, molecular dynamics, and those where such deviations are small, for
which a continuum description is suitable. Hybrid methods exploit this spatial structure for
performing simultaneous atomistic and continuum calculations in appropriate regions of the
system; individual implementations differ in how the two calculations are combined. In this
section, we describe two basic approaches to hybrid calculations: spatial partitioning and coarse
graining.

3.3.1. Spatial partitioning: atomistic and finite element calculations. We illustrate the
implementation of this hybrid approach with the scheme proposed by Broughton et al [158–
161]. The entire system is described in terms of a Hamiltonian whose degrees of freedom are
the positions and velocities of the atoms in the atomic region,and the displacements and rates of
change of elements in the continuum region. If molecular dynamics is used within the atomic
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Figure 8. Hybrid scheme for two orientations of a silicon crystal, showing the transition between
molecular dynamics (MD) and finite element (FE) regions through ‘handshaking’ (HS) regions
(red box) [162]. The circles within the FE region represent nodes and the elements are bounded
by lines. Within the handshaking region the elements and nodes of the FE region merge into the
atomic structure of the MD region. Reprinted with permission from E Lidorikis, M E Bachlechner,
R K Kalia, A Nakano, P Vashishta and G Z Voyiadjis 2001 Phys. Rev. Lett. 87 086104. Copyright
2001, American Physical Society.

region, the Hamiltonian HMD for the atomic degrees of freedom is given by equations (7)
and (9):

HMD = 1
2

Na∑
α

mαV2
α + 1

2

Na∑
α �=β

U2(Rαβ) + 1
6

Na∑
α �=β �=γ

U3(Rαβ,Rβγ ,Rβγ ), (33)

where Na is the number of atoms in the system and only two- and three-body interaction terms
have been included in the interatomic potential. In the continuum region, the relatively small
displacements from equilibrium can be described by the equations of linear elasticity, which
are solved using the finite element method (section 2.4).

The atomic and continuum descriptions merge at an interface region, wherein the finite
elements are fine grained down to the atomic scale (figure 8). This is necessary to enable
the finite element region to represent the waves emitted by the molecular dynamics region
and thereby minimize any spurious reflections at the interface. Within the interface region,
the atomic lattice and finite elements overlap, yielding a one-to-one correspondence between
atoms and finite element nodes. The Hamiltonian in this region is defined as the ‘average’ of
the molecular dynamics and finite element Hamiltonians in equations (23) and (33) [160, 161].
The total Hamiltonian H is therefore written as

H = 1
2

N∑
α

mαV2
α + 1

2

Na∑
αβ

wαβU2(Rαβ)

+ 1
6

Na∑
α �=β �=γ

wαβγU3(Rαβ ,Rαγ ,Rβγ ) + 1
2

Nn∑
i j

Ne∑
l

wl ul
i K l

i j u
l
j , (34)
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where N is the total number of particles, with N < Na + Nn because of the overlap of atoms
and nodes in the interface region. The single-body weights wl are defined as 1 if l lies in the
finite element region, 1

2 if l lies in the interface region and 0 if l lies in the molecular dynamics
region. The two-body weights wαβ and three-body weights wαβγ are similarly defined [162].

For greater accuracy, a quantum mechanical region can be embedded within the atomic
region, which is then coupled to the molecular dynamics region in a manner similar to that in
equation (34). The total Hamiltonian may now be written as [161]

H = HQM({ri , ṙi ,Rα, Ṙα}) + HQM/MD({ri , ṙi ,Rα, Ṙα})
+ HMD({Rα, Ṙα}) + HMD/FE({Rα, Ṙα,ui , u̇i })
+ HFE({ui , u̇i }), (35)

in which the notation signifies that there are separate Hamiltonians for the quantum mechanical
(QM), molecular dynamics (MD) and finite element (FE) regions, as well as Hamiltonians for
each of the two interface regions, denoted by QM/MD and MD/FE. The equations of motion of
all the variables are obtained by taking the appropriate derivatives of H and, for a given set of
initial conditions, the system evolves in a manner that conserves the total energy. Although the
spatial decomposition is well suited to parallel computation, the integration of the equations of
motion is based on a single time step for the entire system, so the issue of disparate timescales
is not addressed directly.

3.4. Coarse graining of atomistic degrees of freedom

The spatial partitioning of a system into atomistic and continuum regions requires a
‘handshaking’ interface between the two descriptions. Quite apart from spurious effects that
may arise from this construction, the position of the interface is determined by balancing
computational resources against numerical accuracy. An altogether different approach is a
gradual transition between the atomistic and continuum regions in which their coupling is
derived from the underlying atomistic interactions through coarse graining. The atomistic
degrees of freedom are retained where deviations from equilibrium are appreciable, e.g. near
a defect, but are replaced by a coarser description in regions where the spatial variation of the
system is small. In this section, we describe three methods that implement this strategy: the
quasicontinuum method, the coarse-grained molecular dynamics approach and coarse-grained
kinetic Monte Carlo simulations.

3.4.1. The quasicontinuum method. The quasicontinuum method [163–165] is based on
standard finite elements and constitutive equations derived from atomistic interactions. There
are two main ingredients of this method:

(1) Finite elements on a mesh refined to the atomistic level in critical regions near a defect,
such as the core of a dislocation, but coarsened in regions where the variation of the
displacement is small (figure 9). These regions can evolve during the deformation.

(2) The selection of a subset from the N atoms in the system of Nr ‘representative atoms’, in
terms of which the displacements of all the atoms can be expressed. The total energy is
computed only from the representative atoms using, for example, the Cauchy–Born rule,
which calculates the local energy by assuming that the deformation is locally uniform. In
the atomistic region, all of the atoms are representative atoms, while, in the coarse-grained
region, the density of representative atoms is substantially reduced, so Nr 	 N (figure 9).
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Figure 9. (a) The selection of representative atoms (indicated by dark circles) in the neighbourhood
of a dislocation [164]. Near the dislocation core, in the vicinity of atom A, where deformation
gradients are large, all atoms are representative. Where deformation gradients are comparatively
small, atom B can represent the deformation of several atoms in its vicinity. (b) The finite element
grid constructed from the representative atoms in (a). With kind permission of Springer Science
and Business Media.

Given the positions of all N atoms in the system, the total potential energy can be written
in terms of their displacements ui from equilibrium as

E = E(u1,u2, . . . ,uN), (36)

i.e. as a function of all the displacements. If there is an external load applied to the system,
producing a force fi on atom i , the quantity − ∑N

i=1 fi · ui is added to equation (36). The first
step of the quasicontinuum method is to express the displacements of all atoms in terms of
the displacements uα(α = 1, . . . , Nr) of the representative atoms from the shape functions in
equation (22):

ũi =
Nr∑
α=1

ϕα(r0,i )uα, (37)

where r0,i is the undeformed position of the i th atom and the tilde indicates that the
displacements are interpolated, rather than exact, values. The representative atoms are the
nodes of the finite element mesh. The energy of the system becomes

E = E(ũ1, ũ2, . . . , ũN). (38)

The calculation of this energy, although based on the exact displacements only of the
representative atoms, still involves all of the N atoms in the system.

The total energy is now written as the sum of energies associated with each atom
individually:

E =
N∑

i=1

Ei(ũ1, ũ2, . . . , ũN). (39)

This decomposition occurs naturally for molecular dynamics Hamiltonians,as in equation (34),
but not for the density functional Hamiltonian in equations (2) and (3). This expression is
now approximated by summing only over the representative atoms, with weighting factors to
account for the differences in element size and environment:

Er =
Nr∑
α=1

nαEα, (40)

where nα is the number of atoms subsumed by the representative atom α.
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The evaluation of Er can be obtained by invoking the Cauchy–Born principle, resulting in
what is known as the local version of the quasicontinuum method. The use of linear functions
ϕα in equation (37) to interpolate the displacement field implies that the deformation gradient
F = ∂u/∂r (see equation (18)) is uniform within each element. The Cauchy–Born principle
stipulates that a uniform deformation at the macroscopic scale can be mapped onto the same
deformation at the atomistic scale. For crystalline solids with simple lattice structures, this
implies that all atoms in a region of uniform deformation gradient are energetically equivalent.
Thus, the energy of an element is obtained from the product of the energy of any atom in that
element and the number of atoms contained within the element. The energy in equation (40)
accordingly reduces to

Er =
Ne∑
j=1

� jE(F j), (41)

where � j is the volume of the j th element and E is the energy density for a deformation
gradient of F j . The summation implicit in equation (36) over the atoms in the system has been
thereby reduced to a sum over elements.

The local quasicontinuum method provides a considerable computational simplification of
the evaluation of the total energy in equation (36) and,where surface and interface energetics are
unimportant, a reasonable approximation to the energetics of the system. But there are several
important situations where these assumptions cannot be justified, including dislocation cores
(atom A in figure 9), multiatom unit cells and phase boundaries. For such circumstances, a
nonlocal version of the quasicontinuum method has been developed, based on the ansatz where
the total energy of the system can be written as

E =
Nr∑
α=1

nαEα(uα). (42)

The energy Eα of each representative atom is calculated from the deformed neighbouring
environment determined by the interpolated displacements within the elements. The main
advantage of the nonlocal quasicontinuum method is that its atom-refined limit corresponds
exactly to molecular statics, which thus correctly describes the structures of dislocation cores
and interfaces such as stacking faults and grain boundaries.

The basic form of the quasicontinuum method just described is confined to zero-
temperature static equilibrium, wherein lattice vibrations are neglected and dynamical and
inertial effects during deformation are deemed unimportant. Attempts at extending the
method to incorporate such effects have included zero-temperature dynamics based on classical
equations of motion [166] and coarse graining by integrating the partition function over atoms
not explicitly chosen as representative atoms [166, 167].

3.4.2. Coarse-grained molecular dynamics. The coarse graining of molecular
dynamics [168, 169] is similar in philosophy to the quasicontinuum method. The basic idea is
to obtain a coarse-grained set of finite element equations from an atomistic molecular dynamics
Hamiltonian, as in equation (33). In the following, we denote atomic positions with Greek
indices and finite element nodes with Latin indices. Thus, the displacement of atom α from its
equilibrium position is uα . The nodal displacements u j and momenta p j of the finite element
mesh are weighted averages of the corresponding atomic quantities:

u j =
∑
α

f jαuα, p j =
∑
α

f jαpα, (43)

where f jα is obtained from the finite element interpolating function in equation (22) in a
manner to be described below. Since the number of atoms is greater than or equal to the
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number of nodes, specifying nodal displacements and velocities does not determine all of
the corresponding atomic quantities. The coarse-grained energy is defined as the classical
canonical ensemble average of the molecular dynamics Hamiltonian HMD:

E({uk}, {pk}) = 1

Z
∫

· · ·
∫ ∏

α

dxα d pα �HMDe−βHMD, (44)

in which β = 1/(kBT ) and T is the absolute temperature, Z is the partition function and �
enforces the constraints for the displacements and velocities in equation (43):

� =
∏

j

δ

(
u j −

∑
α

f jαuα

)
δ

(
p j −

∑
α

f jαpα

)
. (45)

Equations (43) and (44) are the central equations of coarse-grained molecular dynamics.
The final step in the formulation is determining f jα . For a given set of atomic displacements
uα , the finite element representation of the displacement field in equation (22) yields

u(rα) =
Nn∑
j=1

u jϕ j(rα) ≡
Nn∑
j=1

u jϕ jα. (46)

Requiring the u j in equation (43) to produce the best least squares fit to the atomic
displacements,

χ2 =
∑
α

|uα − u(rα)|2 =
∑
α

∣∣∣∣uα −
∑

j

u jϕ jα

∣∣∣∣
2

, (47)

yields

f jα =
∑

k

(∑
β

ϕ jβϕkβ

)−1

ϕkα, (48)

where the inverse is a matrix inverse. For a one-dimensional chain with harmonic springs
and an incommensurate mesh, the error in the phonon spectrum obtained with coarse-grained
molecular dynamics is less than 6% compared with the exact result, while that obtained with
the finite element method exceeds 18% [168].

When the mesh nodes and the atomic sites are identical, f jα = δ jα, and the coarse-
grained equations of motion are the same as those obtained from the molecular dynamics
Hamiltonian (equation (7)). This limit illustrates an important difference from the conventional
finite element method, namely, that the basic equations of the coarse-grained methodology are
atomistic equations of motion, rather than partial differential equations that are discretized on
the nodes of the mesh. As the mesh size increases, shorter-wavelength modes are eliminated
by the coarse-graining process and their effect on the remaining modes is included indirectly
through the thermodynamic average in equation (44). This description is expected to be valid,
provided that the system is initially in thermodynamic equilibrium and changes to the short-
wavelength modes are adiabatic. The remaining modes are under no such restrictions and may
thereby be driven out of equilibrium at will.

3.4.3. Coarse-grained kinetic Monte Carlo simulations. The atomistic assembly of surface
nanostructures can be viewed as particles on a lattice that interact according to a set of
prescribed rules for processes such as deposition, surface diffusion and desorption. Kinetic
Monte Carlo simulations of such systems have provided the basis of much of our understanding
of the morphological consequences of particular atomistic processes [170–173]. Continuum
descriptions embody a more global view of morphological evolution, which is especially
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important for heteroepitaxial growth in the presence of misfit strain [174–176], where nonlocal
elastic interactions have hindered the widespread application of KMC simulations [177]. In
this section we describe a systematic coarse-graining method for deriving continuum equations
from the transition rules on a lattice.

In principle, such methods begin at the atomic scale and produce descriptions at the
mesoscale and finally a coarse-grained equation for the macroscopic degrees of freedom.
Renormalization group methods developed initially for static and dynamical critical
phenomena have been applied to molecular dynamics [167] and lattice growth models [197],
and wavelet-based methods have been developed for lattice systems [198–200]. In this section
we describe a method for coarse graining lattice models of the morphological evolution
of interfaces.

We consider a one-dimensional model with only random deposition and surface diffusion
to demonstrate the elements of the coarse-graining methodology; the procedure for higher-
dimensional models is essentially the same, but with correspondingly greater computational
overheads. The system is a lattice of length L on every site i of which is a column of height
hi . Every surface configuration H is specified completely by the array H = {h1, h2, . . . , hL }.
The probability P(H, t) of the system having configuration H at time t is a solution of the
master equation [93],

∂P

∂ t
=

∑
r

[W (H − r; r)P(H − r, t)− W (H; r)P(H, t)], (49)

where W (H; r) is the transition rate from H to H + r, r = {r1, r2, . . .} is the array of all jump
lengths ri and the summation over r is the joint summation over all the ri .

The solution of the master equation is obtained by invoking a limit theorem due to
Kurtz [178–180], which states that, provided that the intrinsic fluctuations are not too large,
the solution of equation (49) is asymptotically equivalent to that of the Langevin equations

dhi

dt
= K (1)

i (H) + ηi , (50)

where the ηi are Gaussian noises that have a zero mean, 〈ηi (t)〉 = 0, and covariance

〈ηi (t)η j (t
′)〉 = K (2)

i j (H)δ(t − t ′), (51)

where the first and second moments of the transition rates are given by

K (1)
i (H) =

∫
ri W (H; r) dr, (52)

K (2)
i j (H) =

∫
rir j W (H; r) dr. (53)

For random deposition, the configurations H and H + r differ by the addition of a single
particle to a randomly chosen column. The associated transition rate is

W (H; r) = τ−1
∑

i

δri ,1

∏
j �=i

δr j ,0, (54)

where τ−1 is the deposition rate. The transition rate for the hopping of a particle from site i to
site j is

W (H; r) =
∑

i j

wi jδri ,−1δr j ,1

∏
k �=i, j

δrk ,0, (55)

where the hopping rate and hopping rules are contained in the wi j . Surface diffusion is often
modelled as nearest neighbour hopping, with Arrhenius rates based on the number of nearest
neighbours of the initial state, in which case we have

wi j = 1
2�i (δi, j−1 + δi, j+1), (56)
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where �i = k0e−βEi , k0 ∼ 1013 s−1 is the attempt frequency, β = 1/kBT and Ei is the energy
barrier for hopping from the i th site. A common choice is Ei = ES + ni EN, where ES is a
site independent barrier due to the substrate, EN is the contribution from each lateral nearest
neighbour and ni is the number of such neighbours.

With the total transition rate given by the sum of equations (54) and (55), the first and
second moments of this quantity are [181]

K (1)
i = 1

2�
2 Ki + τ−1, (57)

K (2)
i j = 1

2

[
δi j�

2�i − (�i + � j )�
2δi j

]
+ δi jτ

−1, (58)

in which the discrete second difference�2 fi = fi−1−2 fi + fi+1 acts only on the first index of δi j.
The counting of nearest neighbours is carried out with step functions, whose singular behaviour
necessitates a careful regularization to obtain a sensible continuum limit [181]. One such
scheme [182, 183] has recently been applied to two other standard models of deposition: the
Edwards–Wilkinson and Wolf–Villain models. For the model at hand, this yields a smoothed
lattice equation of motion from which the renormalization group flow is toward the fixed point
of the equation proposed by Villain [184] and by Lai and Das Sarma [185]:

∂h

∂ t
= −ν ∂

4h

∂x4
− λ

∂2

∂x2

(
∂h

∂x

)2

+ ξ (59)

where ν > 0, λ > 0 and the ξ have mean zero and covariance

〈ηi (x, t)η j (x
′, t ′)〉 = τ−1δ(x − x ′)δ(t − t ′). (60)

Although focusing on the fixed point prevents a direct connection between the coefficients ν
and λ and the hopping rates in equation (56), such a connection can be made in the crossover
regime, as has been demonstrated for the Wolf–Villain model [183]. Comparisons between
the morphological evolution of epitaxial surfaces with solutions of equation (59) and other
proposed equations have been used to estimate the magnitudes and signs of the coefficients,
thereby inferring the influence of particular processes [186, 187].

4. A case study: self-organized quantum dots

Semiconductor quantum dots offer the promise of many technological and scientific
innovations, ranging from optoelectronics [188, 189] to quantum computing [190]. All of
these applications are based on the confinement of carriers within quantum dots to discrete
energy levels, as well as a degree of spatial self-organization. The practical implementation
of heterostructures based on quantum dots relies on the uniformity of their sizes to ensure, for
example, that a large number of dots are active at a specified optical wavelength.

The basic principle behind the formation of quantum dots is the formation of coherent
three-dimensional (3D) islands during the Stranski–Krastanov growth of a highly strained
system [191, 192]. The prototypical cases are InAs on GaAs(001) (7% lattice misfit) and Ge
on Si(001) (4% lattice misfit). When the islands are embedded within a material with a wider
band gap, the carriers within the islands are confined by the potential barriers that surround each
island, thereby forming an array of quantum dots. Because these quantum dots are obtained
directly by growth, with no additional processing, they are referred to as self-organized or
self-assembled structures.

Although quantum dots are routinely produced in laboratories throughout the world, many
fundamental questions remain about the self-organization process. The 3D islands are formed
through a nucleation process, but unless the substrate is prepared with preferential nucleation
sites (e.g. through patterning [193] or dislocation networks [194]), the ensemble of islands
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exhibits a distribution of volumes that leads to a far greater inhomogeneous broadening than
is acceptable for optical applications.

The challenges for modelling stem from the fact that the self-organization of quantum
dot arrays is an inherently multiscale phenomenon. We consider the InAs/GaAs system as
an example. The nucleation process is known to favour a specific reconstruction and surface
orientation: the c(4 × 4) phase of GaAs(001) (figure 3(a)). The dots form abruptly and with
varying degrees of spatial correlation (figure 3(c)). As they grow, the increasing strain energy
suppresses the attachment of migrating adatoms, which promotes self-limiting growth. The
calculation of electronic states within quantum dots requires detailed information on their
size and shape (figure 3(b)); the absence of such information has meant that the available
calculations have provided only semi-quantitative information. The strain field associated
with quantum dots affects the nucleation of three-dimensional islands in subsequent layers,
which promotes vertical self-organization of quantum dot arrays (figure 3(d)). In this section
we review the multiscale modelling studies that have addressed the formation of self-organized
quantum dots.

4.1. First-principles studies of InAs/GaAs(001) heteroepitaxy

First-principles calculations provide detailed information about specific materials systems.
For nanostructure formation and other supported kinetic processes this includes the stability
of surface reconstructions, potential energy surfaces for the diffusion of surface atoms and
energy barriers for other processes, which can be used in KMC simulations (see section 3.1.3),
and the effect of strain on these barriers. Such calculations have been carried out for the initial
stages of quantum dot formation in the InAs/GaAs system, such as the surface phase diagram
of GaAs(001) [116, 201, 202], InAs(001) [36, 203], including alloy phases, and the effect of
strain on these phases as a function of the As chemical potential [36, 204], potential energy
surfaces for In and Ga adatom migration on the GaAs substrate and for models for the InGaAs
wetting layer [205].

The investigation of In migration on GaAs(001)-c(4×4)can provide insight into the initial
stages of the wetting layer formation, and analogous studies on the In2/3Ga1/3As alloy surface
can provide insight into adatom migration on the wetting layer(s), despite not necessarily
corresponding to the actual structure of the wetting layer. First-principles calculations [36, 206]
reveal that the corrugation of the potential energy surface for In migration on In2/3Ga1/3As is
remarkably small, showing a maximum variation of �0.5 eV, which is markedly less than that
for GaAs(001)-c(4 × 4). The highly mobile In (and Ga) adatom population is thereby poised
to respond to any changes in the surface chemical potential brought about by the nucleation
of islands. This is leads to an initially rapid island nucleation rate, which is a characteristic
signature of these systems [207, 208].

Indium migration on GaAs(001)-c(4 × 4) is significantly affected by strain and shows a
linear dependence for small strains [209, 210]. For an inhomogeneously strained sample, this
implies a position dependent activation energy for In migration. By using a flat island on this
surface, Kratzer et al [213] have shown that strain leads to a repulsive potential with a strength
of up to 0.2 eV that affects both the binding energy and, to a somewhat smaller extent, the
diffusion barriers for an In adatom that approaches such an island (figure 10). This repulsion
can severely impede the growth rate of strained islands and has been cited [211, 212] as a key
factor for narrowing the island-size distribution. A simulation [205] of two elongated islands
that compete for In adatoms does indeed show that the sizes of the growing islands tend to
equalize.
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Figure 10. The migration potential (right panel) for an In adatom near a coherent InAs island (of
width s and height h) on GaAs(001)-c(4 × 4) [36]. In addition to the diffusion potential due to
the atomic structure of the surface, the strain field in the substrate caused by the island produces
a repulsive potential that lifts both the binding energies (lower bold curve) and transition state
energies (upper bold curve) near the island.

4.2. Hybrid molecular dynamics–finite element calculation of strain in nanopixels

The effects of strain on the ordered self-assembly of quantum dot ensembles originate with the
interplay between the elastic energy within individual dots and the elastic interaction between
dots. The strain within each dot affects its composition, shape and growth rate. Interactions
between dots are evident in vertical self-organization (figure 3(d)), whereby the strain field
of buried dots creates preferential nucleation sites for the next layer of quantum dots [195].
A description of such self-organization kinetics requires a calculation that consolidates the
short-range atomistic and long-range continuum manifestations of strain.

Such a calculation, with the hybrid molecular dynamics/finite element method described
in section 3.3.1, has been reported by Lidorikis et al [162], albeit on a Si/Si3N4 nanopixel on
Si(111), rather than a quantum dot. The geometry is shown in figure 11. In the molecular
dynamics region, the Stillinger–Weber potential [71] was used for Si, a combination of two-
and three-body terms (see equation (9)) for Si3N4 that include electronic polarizability, charge
transfer and covalent bonding, and a variation of this potential for the Si/Si3N4 interface to
account for the charge transfer and bonding determined from electronic structure calculations.

The absolute displacements of this system are shown in figure 11. A comparison is shown
between a full molecular dynamics simulation and the hybrid calculation to demonstrate the
effectiveness of the hybrid methodology in reproducing the details of molecular dynamics.
Appreciable displacements are seen well below the handshaking region, an important effect
for the vertical self-organization of quantum dot ensembles. A separate calculation with
the handshaking region placed 30 Å below the surface of the substrate produced essentially
identical results. The application of this hybrid scheme, or indeed any modelling that
utilizes molecular dynamics for the InAs/GaAs system, necessitates first developing adequate
interaction potentials for this complex system. Su et al [196] have reported large-scale
molecular dynamics simulations of InAs/GaAs square nanomesas which, insofar as such
comparisons are meaningful, are consistent with the results in figure 11.

4.3. Off-lattice kinetic Monte Carlo simulations of Stranski–Krastanov growth

As discussed in section 3.3, current implementations of hybrid strategies address the presence
of multiple spatial scales, but not multiple time scales. The simulation of heteroepitaxial
kinetic phenomena, which typically have competing strain relaxation mechanisms [216, 217],
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Figure 11. (Left.) (a) Two-dimensional projection of the Si/Si3N4 nanopixel, with Si and Si3N4
shown green and yellow, respectively. (b) The handshaking (HS) region separating the molecular
dynamics (MD) and finite element (FE) regions in the Si substrate along two directions. This region
lies 10 Å below the surface of the substrate. The circles within the FE region represent nodes and
the elements are bounded by lines (see figure 8) [162]. (Right.) Absolute displacement |�r| from
equilibrium within a slice through the centre of the pixel for (a) a full molecular dynamics simulation
and (b) the hybrid molecular dynamics–finite element calculation [162]. Reprinted with permission
from E Lidorikis, M E Bachlechner, R K Kalia, A Nakano, P Vashishta and G Z Voyiadjis 2001
Phys. Rev. Lett. 87 086104. Copyright 2001, American Physical Society.

has thereby relied upon kinetic Monte Carlo simulations based on simplified structures
and rules for particular systems. Lattice-based simulations [177] are appropriate for
coherent (i.e. dislocation-free) morphologies, but the continuous atomic positions in off-lattice
models [214, 215] allow deviations from a perfect lattice structure that are dictated by an
interatomic potential, including the possibility of dislocation formation. KMC simulations of
off-lattice models, where transition rates are calculated directly from an interatomic potential,
provide a temporal coarse-graining approximation to a full molecular dynamics simulation,
which would be impractical for the typical time scales of quantum dot formation, even with
modern acceleration strategies [86].

Biehl et al [218, 219] have carried out off-lattice KMC simulations on one-dimensional
substrates using a Lennard-Jones potential,

Uαβ = 4U0

[(
σ

Rαβ

)12

−
(
σ

Rαβ

)6
]
, (61)

where the distance Rαβ = |Rα − Rβ | between atoms α and β is a continuous variable. The
simulation proceeds by assigning an Arrhenius rate to each transition event i ,

ri = ν0 exp(−Ei/kBT ), (62)

where ν0 is the attempt frequency and Ei is the energy barrier for the process. These simulations
are particularly simple for one-dimensional substrates because the path between neighbouring
local minima of the potential energy is uniquely determined,and the transition state corresponds
to the separating local maximum.

The interactions within the two different materials in the simulation, the substrate and
the adsorbate, are characterized by the parameters (Us, σs) and (Ua, σa), respectively, in
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Figure 12. A section of a simulated crystal obtained for a flux of 7.0 ML s−1 and a simulation
temperature T = 500 K [219]. Islands are located on a wetting layer of approximately one
monolayer thickness and the six bottom layers represent the substrate. The darker the shading of
a particle, the larger the average distance from its nearest neighbours. The parameters used were
Us = 1.0 eV, Ua = 0.74 eV, Uas ≈ 0.86 eV.

equation (61), and substrate–adsorbate interactions by

Uas = √
UsUa, σas = 1

2 (σs + σa). (63)

Since the lattice constant of a monatomic Lennard-Jones crystal is proportional toσ , the relative
misfit is given by ε = (σa − σs)/σs. For the simulation of SK growth, the parameters were
chosen such that σa > σs, with ε = 4%, and Us > Uas > Ua.

A typical morphology is shown in figure 12. The substrate is flat prior to the onset of
deposition, and growth proceeds initially in a layer-by-layer manner, as the wetting layers
are formed. At a well-defined thickness, monolayer islands on the wetting layer undergo a
rapid transition to bilayer islands. This suggests that the emergence of islands upon islands,
i.e. the transition to three-dimensional growth, is due mainly to upward particle hops onto
existing monolayer islands. After this transition, islands grow by incorporating material from
the deposition flux as well as that from the surrounding wetting layer. Atoms near the centre
of three-dimensional islands adopt positions close to the minimum of the nearest potential
energy trough, while atoms further from the centre of the island are correspondingly further
away from their nearest minima (figure 12). Thus, strain relaxation occurs predominantly at
the edges of islands, as expected.

4.4. Nonlinear evolution equation for self-organization

Continuum equations enable the consequences of elastic interactions for the self-organization
of quantum dots to be identified, while providing a framework for the atomistic origins of this
morphology to be explored. The basic mathematical requirement of such a theory [176] is that
the morphological instability that leads to the formation of islands in finite time must saturate,
leading to islands of finite size. We consider a theory [174–176] in which an epitaxial thin
film wets a rigid substrate. The evolution equation for the height h of this film is

∂h

∂ t
= D

√
1 + |∇h|2∇2

S(E + γK +�), (64)

in which D is proportional to the surface diffusivity, E(h) is the elastic energy [175], γ is the
surface energy and K is the curvature of the surface, and � is the wetting chemical potential,
which is a function of the film thickness, local slope and curvature: � = �(h, |∇h|2,∇2h).

The linear stability analysis [174] of this model (without �) indicates that there is a
critical thickness below which the film is stable and above which it is unstable. Moreover,
the wavenumbers of perturbations corresponding to instability just above the critical thickness
are small. Thus, the nonlinear evolution of the film can be described using a small-slope
approximation. This has the virtue of transforming the free boundary elastic problem into an
evolution equation for the free surface. The small-slope approximation of equation (64) can
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(a) (b)

Figure 13. Quantum dot morphologies obtained from the numerical solution of equation (65) for
particular choices of the parameters g, p and q: (a) a hexagonal array of cone-type dots obtained
for g = 0.2, p = 2 and q = −0.5 and (b) a hexagonal array of cap-type dots, obtained for
g = 0.01, p = −4, and q = 1 [176]. Reprinted with permission for A A Golovin, S H Davis and
P W Voorhees, 2003 Phys. Rev. E 68 056203. Copyright 2003, American Physical Society.

be written as [176]

∂h

∂ t
= g∇2h + ∇4h + ∇6h + ∇2 [

h∇2h + p(∇h)2 + qh2] , (65)

where g, p and q are adjustable constants given in terms of the elastic constants of the film and
model parameters. The linear stability of this equation can be assessed for a perturbation of the
form h ∼ eσ t+ik·r, which yields the dispersion relation σ = −gk2 + k4 − k6. The instability is
seen for g < gc = 1

4 at a wavenumber of kc = 1
2

√
2. This nonzero critical value of kc, which

is a direct result of the wetting layer contribution to the elastic energy, is responsible for the
emergence of solutions of equation (65) with stationary periodic patterns (figure 13).

Although equation (65) was not initially developed as a multiscale theory, such a point of
view would be of evident benefit here. Solutions of this equation do indeed produce a variety
of morphologies for different values of g, p and q , but the appropriate values for any particular
system are not easily determined, and the relationship to underlying atomistic processes is not
at all clear, which pre-empts a direct calculation of these parameters. On the other hand, the
equation of motion for h in equation (65) is of the form one would expect to emerge from
the coarse graining of atomistic models discussed in section 3.4.3. Indeed, such an analysis
[220] of the model used by Ratsch et al [177] for the onset of three-dimensional islanding does
yield most of the terms in equation (65). Once a direct connection to atomistic processes can
be established, a first-principles approach can be applied to determine the appropriate growth
morphology for particular systems as a function of their growth conditions.

5. Summary and outlook

We have surveyed the current status of multiscale modelling, beginning with density functional
theory, molecular dynamics, Monte Carlo simulations and continuum mechanics. These
methods, which form the basic elements of virtually all implementations of multiscale
strategies, were initially developed independently as specialized techniques. Multiscale
modelling synthesizes these atomistic and continuum methods to provide a more natural
and coherent description of materials phenomena than that obtained from the fragmented
perspective of a limited range of length and time scales. But the multiscale paradigm is not
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without its limitations. The three main challenges facing future development of multiscale
modelling are:

• Simulations at finite temperatures. Many of the methods we have described are confined
to zero temperature, wherein the basic quantity is a Hamiltonian for the system expressed
in terms of the appropriate degrees of freedom. In principle, Hamiltonian methods can
be extended to equilibrium at finite temperatures by using the free energy, but inherently
nonequilibrium situations are fundamentally different and a general approach is not close
at hand.

• Time scales accessible by means of molecular dynamics. The bottleneck for macroscopic
time simulations remains the small time step used in classical and quantum molecular
dynamics. While this may be side-stepped in certain applications (e.g. section 4.3), and
acceleration strategies are available for particular situations [86], a general acceleration
methodology would have revolutionary implications that would stretch across many
disciplines.

• Mode transmission across atomistic/continuum interfaces. In methods with a sharp
interface between atomistically resolved and (finite element) continuum regions, high-
frequency modes emanating from the molecular region must be accommodated by
the continuum region. However, the finite elements are unable to resolve the small
wavelengths of the atomistic region and, since such multiscale methods are based typically
on a Hamiltonian formulation, which means that energy is conserved, the modes are
reflected back into the atomistic region, which can lead to spurious results.

Despite these imposing technical challenges, multiscale methods are poised to unravel the
secrets of nanostructures and other materials that will transform science and technology in the
coming century.
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